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Abstract 
Long-wavelength density fluctuations along the line of sight to a gravitationally lensed 
quasar generate a time delay between the images. Based upon the recently measured 
delay of 415 i 20 days between the two images in the system 0957+561, we derive a limit 
to the rms mass fluctuation within a sphere of radius rc, (6M/M),, 5 (4/~-l/~ Mpc/ro)3/2, 
assuming a spatially flat Universe. On scales comparable to the present Hubble radius this 
is competitive with microwave anisotropy limits, and on the scale 8h-1 Mpc this is in mild 
conflict with the mass fluctuation inferred from the distribution of bright galaxies. 
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One of the underpinnings of the Friedmann-Robertson-Walker (PRW) cosmology is 
the notion that on sufficiently large scales the Universe is isotropic and homogeneous (see 
Refs. 1, 2). Th e evidence for isotropy is quite firm: among other indications, the ob- 
served isotropy of the cosmic microwave background radiation (CMBR), of faint radio 
source counts, of the x-ray background, and of the expansion itself. The evidence for 
the homogeneity of the Universe is less convincing. The best evidence is the large-angle 
isotropy3 of the CMBR, 6T/T 5 3 x lo- ‘. At large angles, the CMBR probes the gravita- 
tional potential on the last scattering surface on scales comparable to the Hubble radius, 
H,,-’ z 3000h-1 Mpc; its isotropy sets a similar limit to the level of mass inhomogeneity. 
On the scales of clusters and smaller (< lOh- ’ Mpc) the Universe is very inhomogeneous: 
The overdensities in rich clusters are as large as lo3 and in bright galaxies as large as 105. 

Crucial to understanding the evolution of structure in the Universe is the knowledge 
of the current level of inhomogeneity on intermediate scales, say 10h-l to 3000h-l Mpc, 
where we expect that the mass fluctuation 6M/M is less than unity. Our direct knowledge 
of 6M/M on these scales is fragmentary at best. Based upon the distribution of bright 
galaxies in the CfA survey, Davis and Peebles5 infer that (6M/M),, E 1 for rg = 8h-1 
Mpc. However, since it is by no means established that “light traces mass,” determination 
of the level of inhomogeneity based upon galaxy counts is suspect.6 

(The quantity (6M/M) is the rmJ mass fluctuation within a specified volume and 
averaged over the Universe. When the volume is defined by a sphere of radius ~0 with a 
sharp surface, (JM/M),, N C(k3/a16kI/@)jk,,, 1, where the density contrast 6p(S)/p = 

J d3 k6k exp( -ic . Z)/( 27r)3 and C is a numerical coefficient which depends upon the form 
of the power spectrum. For )Sk:j2 oc k”, C = 1.4 to 4.2 for n = -2.9 to 0.9.) 

The most direct probe of the density field of the Universe is the peculiar velocity 
field: If the matter is not distributed homogeneously, then test particles (galaxies) will be 
accelerated relative to the Hubble expansion. Roughly, the peculiar velocity on a given 
scale is related to the density contrast on that scale by (&V/C),, N n8.“(~o/Ho1)(6M/M),,. 
While data exists on scales up to 60h-’ M~c,~ with measured peculiar velocities ranging 
from 100 to 800 km set- ‘, the interpretation of the observations is still being clarified. 
Finally, there are a number of more qualitative measures of large-scale structure that 
suggest that the Universe is inhomogeneous even on relatively large scales (of order 100 
h-l Mpc).* These observations include the extension of the CfA red shift survey,’ where 
galaxies appear to be concentrated on the surfaces of bubbles of radius up to 30h-1 Mpc, 
the giant void in Bootes, lo the structure in the faint galaxy “pencil-beam” surveys,11 and 
the clustering of rich clusters and superclusters.12 

In this Letter, we discuss a new probe of the large-scale density field of the Universe 
that utilizes the double QSO 0957+561. It was the first gravitational lens system found 
and is the most comprehensively studied. l3 The lensed QSO has a measured red shift of 

“Q = 1.41, while the lens is a bright galaxy in a cluster with red shift ZL = 0.36. There 
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are two images, separated by an angle be = 6.1” (= 3 x 10s5 rad). The light from the 
two images travels a distance D - H,’ on paths that are separated by a distance of order 
MH,’ 2 O.lh-’ Mpc. Re cently, the time delay between the flux variation of the two 
images was measured to be 415 f 20 days. I* A delay of this magnitude is expected to arise 
from two effects associated with the lens itself: the geometric difference in length between 
the two light paths, At - (60)2D, and the gravitational time delay induced as the light 
paths traverse different parts of the lens potential. I5 In addition, a time delay between 
the two light paths will arise due to gravitational perturbations associated with density 
(scalar metric) perturbations along the line of sight. Since the observed time delay is 415 
days, and the predicted time delay I6 due to the lens is about l& 1 yr, the extra time delay 
introduced by any intervening mass inhomogeneity (not associated with the lens) must be 
less than about a year. We will use this fact to derive an upper limit to the level of mass 
fluctuations. (Allen17 has recently considered this effect for tensor metric perturbations to 
set a limit to the density of long-wavelength gravitational waves.) 

The perturbation of a photon’s trajectory due to metric perturbations was first dis- 
cussed by Sachs and Wolfe.4 We will follow their treatment closely. The background metric 
is most conveniently given in conformal form: ds2 = R(~)~[dq~ - bijdzidzj], where i, j 
run from 1 to 3, and the four vector dxp = (dT,dZ). The quantity R(q) is the cosmic 
scale factor; for simplicity we shall assume the spatially flat (lna = 1) FRW model. The 
conformal-time variable and cosmic-scale factor are normalized so that R(T) = 2~~H[l, 
t = $$H,‘, and no = 1, where subscript zero indicates the present epoch. Note that the 
2~ = (7, z’) are comoving coordinates and that Rc = 2H<l. The perturbed metric is 

where synchronous gauge has been used (/zoo = hoj = 0). The choice of synchronous gauge 
means that clock time t and conformal time 77 are always related by t = 2q3/3Ho, even in 
the presence of metric perturbations. 

We assume that the deviations from homogeneity are small, and work to linear or- 
der. The growing mode density perturbations are characterized by:‘p2r4 hij(q,Z) = 
-q2a2B(z)/ax’axj, where Sk(7) = q2k2Bk/2. The scalar field B(Z) describes the metric 
perturbations today, Bk is its Fourier transform and k = [iI is the comoving wavenumber, 
related to the present physical wavenumber by kphys = k/& = kHo/2. 

We need to compute the time delay that a photon suffers in traveling from its point 
of emission to here and now. The solution to the null-geodesic equation can be expanded 
as zfi(w) = ozp(w) + lzP(w), where w is the affine parameter of the photon’s path, 0~” is 
the zeroth-order trajectory, and 1x” is the first-order (in hij) correction to the trajectory. 
Ignoring for the moment the lensing galaxy, the zeroth-order trajectory can be written 
as: oq = 7f.g + w, Oxi = wei, where the emission event is (q~,<), the reception event is 

[‘7R, h2 - 17E) 1 2 , and w runs from 0 to ~JR - 7~. For simplicity the emission event is taken 
to be at the origin of the spatial-coordinate system, and the constant unit vector d is the 
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zeroth-order-spatial direction of the photon. ( Taking 7~ = q. = 1, 7~ = (I+ s9)-1/z and 
the present physical distance to the QSO is Lphyr = RoL = 2H,‘[l - (1 + ~~)-‘/2].) 

The time delay due to density inhomogeneities along the trajectory is contained in 
In: The total (conformal) time delay A7 = lq(w = VR - 7]E), and the total (clock) 
time delay At = 2Hc’Aq. From the geodesic equation it follows that4 

where the integrand is to be evaluated along the unperturbed trajectory. Using the fact 
that dB/dw = (8B/Bxi)ei, it follows dlv/dw = (-qdB/dw + B)Iy. Since we will compare 
the time delay accumulated along two paths that start and end at the same points, we can 
drop the path-independent terms. We then find 

J t)R-tlR 

AT = 2 
0 

Bdw .= & / $d3k lnRBnE exp(-&- if)dw, (3) 

where 6~ = a,(~ = 1). Since B(Z) plays the role of the Newtonian potentiaJ4 we recognize 
the first expression as the usual gravitational time delay. 

In order to find the observable difference in time delays between the two images of the 
lensed QSO we employ the simplified geometry shown in Fig. 1: The two light paths are 
taken to be symmetrically perturbed about the straight-line trajectory by an angle 6B.l’ 
The gravitational time delay difference between the two images is 

AT G 2H,‘Aq 
path 1 8&l 

path 2, 
= o3 / $d3k lL(AZ. e) exp(-iwz. d)dw, (4) 

where the unperturbed trajectory is Z’ = iw (w = 0 to L z 1 - 7~) and the separation 
between the paths of the two images is AZ= w668forO<w<L/2andAs’=(L-w)668 
for L/2 < w < L. Evaluating the integral and generalizing the result by taking the position 
of the QSO to be ZQ, the difference in time delay between the two paths is 

' AT = -4;;;; 0' Jhexp (-ii.6;) 2s(S)exp(-Z.Z’q)d3k, (5) 

where g(g) Y (I . e^) sin2(f . 8y)/($ - ;)” is the “response function” to the mode k and I) -e+ 
k = k//k/. From this expression by using Parseval’s theorem we obtain the expectation for 
(AT)2 averaged over all possible QSO positions 5~: 

((AT)2) = (46OH;‘)’ (6) 

The response function g(c) depends upon both k and the direction of z in relation to the 
lens system. Averaging g(s) over all directions we find that g 3 [J lg(g)/2dCZ/4r]1/2 + 
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3.6 x 10-2(kL)2 for kL < 1 and 9 -+ 0.1(kL)3/2 for kL >> 1. The quantity kL can be 
written as kL = 2[1 - (1 + zc$1’2](kphys/Ho). 

If we assume that QSO 0957+561 occupies a “typical” position in the Universe, we 
can infer that ((AT)2)‘/2 5 1 yr. This leads to the following bound: 9h2 x lo-l3 2 

jr lg(~)12(H~/k~hys)2(k31bit12/2n2)dlnk. A ssurning no logarithmic decade contributes 
more than 9h2 x lo- i3 to the integral (and setting C = 3), we obtain the bounds 

(6M/M),, 5 (4h-‘j3 Mp~/r~)‘/~ (TO << 3000h-‘Mpc), (74 

(6M/M),, 5 1.4 x 10-4(3000Mpc/r0) (TV >> 3000h-‘Mpc). PI 

How does our result compare with other observations? The large-angle isotropy of 
the CMBR sets a limits (SM/M),, 5 3 x 10-2(100h-‘Mpc/ro)2, so our bound is more 
sensitive than the microwave anisotropy limit on scales ~0 5 2000he3 Mpc. On small 
scales our bound is in mild conflict with the inference that (bM/M)Bh-l Mpc 21 1. This 
could indicate that bright galaxies are more clustered than the underlying mass density 
(as predicted in the biased scenarios’). To compare with a specific model, consider the 
Harrison-Zeldovich spectrum with cold dark matter; the power spectrum is given by 16k I2 = 
Ak/(l+@k+wk3/2+rk2)2 where p = l.7he2 Mpc, w = 9.0hm3 Mpc312, y = 1:0he4 Mpc2, 
and the overall normalization A = 4.4 x lo8 Mpc4 (h = 0.5), 7.5 x lo4 Mpc4 (h = 1) based 

UPon @f/M)6h- 1 Mpc = 1. Using this expression for 16k12 we obtain ((AT)2)‘~2 = 28 yr 
(h = 0.5), 10 yr (h = 1), in conflict with the observed delay. 

Our limit is based upon the assumption that QSO 0957+561 is at a “typical” location 
in the Universe; if the perturbations arise from a gaussian-random process (e.g., as in most 
inflationary models), then the deviations of AT from the mean are gaussian distributed 
and not likely to differ from the above estimate by more than a factor of a few. On the 
other hand, if the perturbations are non-gaussian, much larger excursions from the mean 
could occur. In addition, we have assumed that our ability to obaerue a lensed QSO is 
not strongly biased toward extremely smooth lines of sight. Since surveys have turned up 
about as many lenses as expected (albeit only a handful), this effect cannot be large. 

The formalism developed above is only strictly valid for linear perturbations. On small 
scales, r. s 8h-’ Mpc, we expect structure to be nonlinear. In this regime we can instead 
consider the time delay due to individual, bound stationary clumps along the line of sight; 
clearly, we cannot tolerate more than one or two gravitational potential wells comparable 
to those of the brightest cluster galaxies very near the line of sight. This is consistent with 
the observed absence of bright field galaxies near the QSO images, and it also implies that 
there are not many dark potential wells along the line of sight. This has implications for 
models of biased galaxy formation. *6*19 In these scenarios, one expects up to 4 or 5 times 
as many “dark” galaxies as normal galaxies. Even if they have surface densities too small 
to produce multiple image splittings themselves, such dark galaxies should reveal their 
presence by their contribution to lens time delays. 
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Finally, we emphasize that our results were obtained for a flat Universe; the extension 
to open models (!& < 1) will be discussed elsewhere. I9 Here we note that, if Ro is close to 
1, the time delay due to inhomogeneity is modified, AT + AT[l - 13(l- fl,)/7], and that 
AT vanishes as 00 + 0, AT + AT[-6Sto(ln(20,“2) - 2}]. Thus, the apparent conflict 
with non-linear structure on 8h- r Mpc could be resolved if 00 is relatively small. 

To summarize, the “double” quasar 0957f561 provides a unique probe of the gravi- 
tational potential (and underlying mass density) of the Universe on scales of lOh-i Mpc 
to 3000h-' Mpc, and provides convincing evidence that the Universe is smooth on these 
scales. A number of lensed QSO’s have now been found, and they should provide addi- 
tional probes when their time delays are measured. For 0957+561 the observed time delay 
is about that expected from the lens alone. Since this “intrinsic” lens delay is proportional 
to 662 while the delay due to inhomogeneities scales as So, the sensitivity of our probe 
increases as (66) -l. It is of interest that several lens candidates with &9 z 2” have been 
proposed; for these systems, the time delay due to inhomogeneities may dominate the . 
intrinsic delay. In this regard, the preliminary evidence for a time delay of order a month 
for the triple lens PG 1115+08 (Se 21 2”) is suprising. 

We gratefully acknowledge helpful conservations with P.J.E. Peebles, D.N. Schramm, 
and C. Alcock. This work was supported in part by the NASA (grant NGW-1340) at 
Fermilab and by the DOE at Fermilab and Chicago. 
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Figure Caption 

FIG. 1. The simplified geometry assumed for system 0957+561. The straight line repre- 
sents the unperturbed path; the straight lines labeled 1 and 2 represent the unperturbed 
paths when lensing is taken into account. 
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